From Events

Human Brain Project @ Impakt Festival

I spent my time at the five-day long Impakt Festival watching screenings, listening to talks, interacting with artworks and making plenty of connections with both new and old friends. I’m still digesting the deluge of aesthetic approaches, subjective responses and formal interpretations of the theme of the festival, “Soft Machines: Where the Optimized Human Meets Artificial Empathy”.

imapktIt’s impossible to summarize everything I’ve seen. While there were a few duds, like any festival, the majority of what I experienced was high-caliber work. Topping my “best of list” was the “Algorithmic Theater” talk by Annie Dorsen, the Omer Fast film, “5000 Feet is the Best”, the Hohokum video game by Richard Hogg and a captivating talk on the Human Brain Project.


For the sake of brevity, I’m going to cover just the presentation on the Human Brain Project (HBP). Even though this is a science project, what impressed me was similarities in methodology to many art projects. HBP has simple directive: to map the human brain. However the process is highly experimental and the results are uncertain.

HBP is largely EU-funded and was awarded to a consortium of researchers from a competition with 26 different organizations. The total funding over the course of the 10-year project is about 1 billion Euros, which is a hefty price tag for a research project. The eventual goal, likely well-after the 10 year period will be to actualize a simulated human brain on a computer — an impossibly ambitious project given the state of technology in 2014.

I arrived skeptical, well-aware that technology projects often make empty promises when predicting the future. Marc-Oliver Gewaltig, who is one of the scientists on HBP presented the analogy of 15th-century mapmaking. In 1492, Martin Behaim collected as many known maps of the world as he could, then produced the Erdapfel, a map of the known world at the time. He knew that the work was incomplete. There were plenty of known places but also many uncertain geographical areas as well. The Erdapfel didn’t even include any of the Americas since it was created before the return of Columbus from his first voyage. But, the impressive part was that the Erdapfel was a paradigm shift, which synthesized all geographical knowledge into a single system. This map would then be a stepping stone for future maps.

Carte_behaimAccording to Gewaltig, the mission of the HBP will follow a similar trajectory and aggregate known brain research into a unified, but flawed model. He fully recognizes that the directive of the project, a fully working synthetic human brain is impossible at this point. The computing power isn’t available yet, nor will it likely be there in 10 years.

The human brain is filled with neurons and synapses. The interconnections are everywhere with very little empty space in a brain. Because of this complexity, the HBP project is beginning by trying to simulate a mouse brain, which is within technology’s grasp in the next 10 years.

brain-mapThe rough process is to analyze physical slices of a mouse brain rather than chemical and electrical signals. From this information, they can construct a 3D model of a mouse brain itself using advanced software. For those of you who are familiar with 3D modeling, can you imagine the polygon count?

Gewaltig also made a distinction in their approach from science-fiction style speculation. When thinking about artificial intelligence, we often think of high-level cognitive functions: reasoning, memory and emotional intelligence. But, the brain also handles numerous non-cognitive functions: regulating muscles, breathing, hormones, etc. For this reason, HBP is creating a physical model of a mouse, where it will eventually interact with a simulated world. Without a body, you cannot have a simulated brain, despite what many films about AI suggest.

virtualmouseWhile I still have doubts about the efficacy of the Human Brain Project, I left impressed. The goal is not a successful simulated brain but instead to experiment and push the boundaries of the technology as much as possible. Computing power will catch up some day, and this project will help push future research in the proper direction. The results will be open data available to other scientists. Is that something we can really argue against?







Impakt Festival: Opening Night

The Impakt Festival officially kicked off this Wednesday evening, and the first event was the exhibition opening at Foto Dok, curated by Alexander Benenson.


The works in the show circled around the theme of Soft Machines, which Impakt describes as “Where the Optimized Human Meets Artificial Empathy”.

Of the many powerful works in the show, my favorite was the 22-minute video, “Hyper Links or it Didn’t Happen,” by Cécile B. Evans. A failed CGI rendering of Philip Seymour Hoffman narrates fragmented stories of connection, exile and death. At one point, we see an “invisible woman” who lives on a beach and whose lover stays with her, after quitting a well-paying job. The video intercuts moments of odd narration by a Hoffman-AI. Spam bots and other digital entities surface and disappear. None of it makes complete sense, yet it somehow works and is absolutely riveting.


After the exhibition opening, the crowd moved to Theater Kikker, where Michael Bell-Smith, presented a talk/performance titled “99 Computer Jokes”. He spared the audience by telling us one actual computer joke. Instead, he embarked on a discursive journey, covering topics of humor, glitch, skeuomorphs, repurposing technology and much more. Bell-Smith spoke with a voice of detached authority and made lateral connections to ideas from a multitude of places and spaces.

michael In the first section of his talk, he describes that successful art needs to have a certain amount of information — not too much, not too little, citing the words of arts curator Anthony Huberman:

“In art, what matters is curiosity, which in many ways is the currency of art. Whether we understand an artwork or not, what helps it succeed is the persistence with which it makes us curious. Art sparks and maintains curiosities, thereby enlivening imaginations, jumpstarting critical and independent thinking, creating departures from the familiar, the conventional, the known. An artwork creates a horizon: its viewer perceives it but remains necessarily distant from it. The aesthetic experience is always one of speculation, approximation and departure. It is located in the distance that exists between art and life.”

In the present time where faith in technology has vastly overshadowed that of art, these words are hyper-relevant. The Evans video accomplishes this, resting in this valley between the known and the uncertain. We recognize Hoffman and he is present, but in an semi-understandable, mutated form. We know that the real Philip Seymour Hoffman is dead. His ascension into a virtual space is fragmented and impure. The video suggests that traversing the membrane from the real into the screen space will forever distort the original. It triggers the imagination. It sticks with us in a way that stories do not.

What Bell-Smith alludes to his talk is that the idea of combining the human and the machine won’t work…as expected. He sidesteps any firm conclusions. His performance is like the artwork that Huberman describes: it never reaches resolution and opens up a space for curiosity.

Later he displayed slides of Photoshop distasters, a sort of “Where’s Waldo” of Photoshop errata. Microseconds after viewing the advertisement below, we know something is off. The image triggers an uncanny response. A moment later we can name the problem of the model having only one leg. Primal perception precedes a categorical response. Finally, everyone laughs together at the idiosyncrasy that someone let into the public sphere.


After Bell-Smith’s talk we had a chance for eating-and-drinking. Hats off to the Impakt organization. I know I’m biased since I’m an artist-in-residence at Impakt during the festival itself, but they certainly know how to make everyone feel warm and cozy.
galaNext up was the keynote speaker, Bruce Sterling, who is a science fiction writer and cultural commentator. He boldly took the stage without a laptop, and so the audience had no slides or videos to bolster his arguments. He assumed the role of naysayer, deconstructing the very theme of the festival: Where Optimized Human Meets Artificial Empathy. Defining the terms “cognition” (human) vs “computation” (machine), he took the stance that the merging of the two was a categorical error in thinking. His example: birds can fly and drones can fly, but this doesn’t mean that drones can lay eggs. My mind raced, thinking that someday drone aircraft might reproduce. Would that be inconceivable?

Sterling tackled the notion of the Optimized Human with san analogy to Dostoyevsky’s Crime and Punishment. For those of you that don’t recall your required high school reading, the main character of the book is Raskolnikov, who is both brilliant and desperate for money. He carefully plans and then kills an morally bankrupt pawnbroker for her cash. The philosophical question that Dostoyevsky proposes is the idea of a superhuman:  select individuals who are exempt the prescribed moral and legal code. Could the murder of a terrible person be a justifiable act? And could the person to judge this would be someone who is excessively bright, essentially leaving the rest of the humanity behind?

In the book, the problem is that the social order gets disrupted. Raskolnikov action introduces an deadly unpredictable element into his village. With an uncertainty to the law and who executes it, no one feels safe. At the conclusion of the novel, Raskolnikov ends up in exile, in a sort of moral purgatory.

The very notion of the “optimized human” has similar problems. If select people are somehow “upgraded” through cybernetics, gene therapies and other technological enhancements, what happens to the social order? Sterling spoke about marketing, but I see the greater problem one of leveraged inequality. If there are a minority of improved humans who have combined integrated themselves with some sort of techno-futuristic advantages, our society rapidly escalates the classic problem of the digital divide. The reality is that this has already started happening. The future is here.bruce Bruce Sterling concluded with the point that we need to pay attention to how technology is leveraged. His example of Apple’s Siri system, albeit not a strong case of Artificial Empathy, is owned by a company with specific interests. When asked for the nearest gas station or a recipe for grilled chicken, Siri “happily” responds. If you ask her how to remove the DRM encoding on a song in your iTunes library, Siri will be helpless. While I disagreed with a number of Sterling’s points in his talk, what I do know is that I would hope for a non-predictive future for my Artificial Empathy machines.

The Impakt Festival continues through the weekend with the full schedule here.




Soft Machines and Deception

The Impakt Festival officially begins next Wednesday, but in the weeks prior to the event, Impakt has been hosting numerous talks, dinners and also a weekly “Movie Club,” which has been a social anchor for my time in Utrecht.

10437517_643169085789022_7756476391981345316_nEvery Tuesday, after a pizza dinner and drinks, an expert in the field of new media introduces a relatively recent film about machine intelligence, prompting questions that frame larger issues of human-machine relations in the films. An American audience might be impatient about a 20-minute talk before a movie, but in the Netherlands, the audience has been engaged. Afterwards, many linger in conversations about the very theme of the festival: Soft Machines.


The films have included I, Robot, Transcendence, Her and the documentary: Game Over: Kasparov and the Machine. They vary in quality, but with the introduction of the concepts ahead of time, even Transcendence, a thoroughly lackluster film engrossed me.

The underlying question that we end up debating is: can machines be intelligent? This seems to be a simple yes or no question, which cleaves any group into either a technophilic pro-Singularity or curmudgeonly Luddite camp. It’s a binary trap, like the Star Trek debates between Spock and Bones. The question is far more compelling and complex.

The Turing test is often cited as the starting point for this question. For those of you who are unfamiliar with this thought experiment, it was developed by British mathematician and computer scientist, Alan Turing in a 1950 paper that asked the simple question: “can machines think”.

The test goes like this: suppose you have someone at a computer terminal who is conversing with an entity by typing text conversations back and forth, what we now regularly do with instant messaging. The entity on the other terminal is either a computer or a human, the identity of which is unknown to the computer user. The user can have a conversation and ask questions. If he or she cannot ascertain “human or machine” after about 5 minutes, then the machine passes the Turing test. It responds as if a human would and can effectively “think”.


In 1990, the thought experiment became a reality with the Loebner Prize. Every year, various chatbots — algorithms which converse via text with a computer user — compete to try to fool humans in a setup that replicates this exact test. Some algorithms have come close, but to date, no computer has ever successfully won the prize.


The story goes that Alan Turing was inspired by a popular party game of the era called the “Imitation Game” where a questioner would ask an interlocutor various questions. This intermediary would then relay these questions to a hidden person who would answer via handwritten notes. The job of the questioner was to try to determine the gender of the unknown person. The hidden person would provide ambiguous answers. A question of “what is your favorite shade of lipstick” could be answered by “It depends on how I feel”. The answer is in this case is a dodge as a 1950s man certainly doesn’t know the names of lipstick shades.

Both the Turing test and the Imitation Game hover around the act of deception. This technique, widely deployed in predator-prey relationships in nature, is engrained in our biological systems. In the Loebner Prize competitions, there have even been instances where the human and computer will try to play with the judges, making statements like: “Sorry I am answering this slowly, I am running low on RAM”.

It may sound odd, but the computer doesn’t really know deception. Humans do. Every day we work with subtle queues of movement around social circles, flirtation with one another, exclusion and inclusion into a group and so on. These often rely on shades of deception: we say what we don’t really mean and have other agendas than our stated goals. Politicians, business executives and others that occupy high rungs of social power know these techniques well. However, we all use them.

The artificial intelligence software that powers chatbots has evolved rapidly over the years. Natural language processing (NLP) is widely used in various software industries. I had an informative lunch the other day in Amsterdam with a colleague of mine, Bruno Jakic at AI Applied, who I met through the Affect Lab. Among other things, he is in the business of sentiment analysis, which helps, for example, determine if a large mass of tweets indicates a positive or negative emotion. Bruno shared his methodology and working systems with me.

State-of-the-art sentiment analysis algorithms are generally effective, operating in the 75-85% range for identification of a “good” or “bad” feeling in a chuck of text such as a Tweet. Human consensus is in the similar range. Apparently, a group of people cannot agree on how “good” or “bad” various Twitter messages are, so machines are coning close to effective as humans on a general scale.

The NLP algorithms deploy brute force methods by crunching though millions of sentences using human-designed “classifiers” — rules to help determine how a sentence looks. For example, an emoticon like a frown-face, almost always indicates a bad feeling.


Computers can figure this out because machine perception is millions of time faster than human perception. It can run through examples, rules and more but acts on logic alone. If NLP software code generally works, where specifically does it fail?

Bruno pointed out was that machines are generally incapable of figuring out if someone is being sarcastic. Humans immediately sense this by intuitive reasoning. We know, for example that getting locked out of your own house is bad. So if you write that this is a contradictory good thing, it is obviously sarcastic. The context is what our “intuition” — or emotional brain understands. It builds upon shared knowledge that we gather over many years.


The Movie Club films also tackle this issue of machine deception. At a critical moment in the film, Sonny, the main robot character in I, Robot, deceives the “bad” AI software that is attacking the humans by pretending to hold a gun to one of the main “good” characters. It  then winks to Will Smith (the protagonist) to let him know that he is tricking the evil AI machine. Sonny and Will Smith then cooperate, Hollywood style with guns blazing. Of course, they prevail in the end.


Sonny possess a sophisticated Theory of Mind: an understanding of its own mental state and well as that of the other robots and Will Smith. It takes initiative and pretends to be on the side of the evil AI computer by taking an an aggressive action. Earlier in the film, Sonny learned what winking signifies. It knows that the AI doesn’t understand this and so the wink will be understood by Will Smith and not be the evil AI.

In Game Over: Kasparov and the Machine, which recasts the narrative of the Deep Blue vs.Kasparov chess matches, the Theory of Mind of the computer resurfaces. We know that Deep Blue won the chess match, which was a series of 6 chess matches in 1997. It is the infamous Game 2, which obsessed Kasparov. The computer played aggressively and more like a human than Kasparov had expected.

At move 45, Kasparov resigned, convinced that Deep Blue had outfoxed him that day. Deep Blue had responded in the best possible way to Kasparov’s feints earlier in the game. Chess experts later discovered that Kasparov could have easily forced a honorable draw instead of resigning the match.

The computer appeared to have made a simple error. Kasparov was baffled and obsessed. How could the algorithm have failed on a simple move, when it was so thoroughly strategic earlier in the game. It didn’t make sense.

Kasparov felt like he was tricked into resigning. What he didn’t consider was that when te algorithm didn’t have enough time — since tournament chess games are run against a clock — to find the best-ranked move, that it would choose randomly from a set of moves…much like a human would do in similar circumstances. The decision we humans make is emotional at this point. Inadvertently, Kasparov the machine deceived Kasparov.

KASPAROVI’m convinced that ability to act deceptively is one necessary factor for machines need to be “intelligent”. Otherwise, they are simply code-crunchers. But there are other aspects, as well, which I’m discovering and exploring during the Impakt Festival.

I will continue this line of thought on machine intelligence in future blog posts, I welcome any thoughts and comments on machine intelligence and deception. You can find me on Twitter: @kildall.









IEEE Milestone for my dad, Gary Kildall

This plaque in Pacific Grove, California, is the IEEE Milestone honoring my dad’s computer work in the 1970s. He was a true inventor and laid the foundation for the personal computer architecture that we now take for granted.

Gary Kildall’s is the 139th IEEE Milestone. These awards honor the key historical achievements in electrical and electronic engineering that have changed the world, and include the invention of the battery by Volta, Marconi’s work with the telegraph, and the invention of the transistor.

More pictures plus a short write-up of the ceremony can be found here:


The dedication event was emotional and powerful, with several of my father’s close colleagues from decades ago gathered to recount his contributions. I knew most of the stories and his work, but there were several aspects of his methodology that I had never heard before.

For example, I learned that my dad was not only a software programmer, but a systems architect, and would spend days diagramming data structures and logic trees on sheets of paper, using a door blank on sawhorses as his work table.

After fastidious corrections, and days poring over the designs, he would embark on programming binges to code what he had designed. And the final program would often work flawlessly on the first run.

With a PhD from the University of Washington, lots of hard work, incredible focus on long-term solutions, plus extraordinary talent, Gary created a vision of how to bring the personal computer to the desks of millions of users, and shared his enthusiasm with just about everyone he met.

My dad turned his passion into two key products: CP/M (the operating system), and BIOS (the firmware interface that lets different hardware devices talk to the same operating system). From this combination, people could, for the first time, load the same operating system onto any home computer.


The IEEE and David Laws from the Computer History Museum did a tremendous job of pulling in an amazing contingent of computer industry pioneers from the early days of personal computing to commemorate this occasion.

At the dedication, my sister Kristin and I had a chance to reconnect with many former Digital Research employees, and I think everyone felt a sense of happiness, relief, catharsis, and dare I say, closure for my dad’s work, which has often been overlooked by the popular press since his premature death in 1994, right in the middle of his career.

My mother, Dorothy McEwen, ran Digital Research as its business manager, to complement my dad the inventor. Together they changed computer history. It was here in Pacific Grove, 1974 that Gary Kildall loaded CP/M from a tape drive onto a floppy disk and booted it up for the first time: the birth of the personal computer.

If you find yourself in Pacific Grove, take a visit to 801 Lighthouse Avenue, Digital Research headquarters in the 1970s, and you can see this milestone for yourself.

Urban Data Challenge

Last Saturday was my first-ever hackathon — The Urban Data Challenge, sponsored by GAFFTA, swissnex, the Berkeley Center for New Media and Rebar.

I arrived at 9am and introduced myself to Casey Reas, co-founder of Processing, who was leading the hackathon and a super-nice guy. When I was working as a New Media Exhibit Developer at the Exploratorium (2012-13), Processing was the primary tool we used for building installations. Thanks Casey!scott_talking_to_casey

I arrived alone and expected a bunch of nerdy 20-somethings. Instead, I ran into some old friends, including Karen Marcelo, who has been generously running dorkbot for 15+ years and has an SRL email address. (coolPoints *= coolPoints)

And, I shouldn’t have been surprised, but Eric Socolofsky, whom I worked directly with at the Exploratorium was also present. He is a heavy-hitter in terms of code and data-viz and taught me how to get the Processing libs running in Java, which makes hacking much much easier.

I sat down at a table with Karen and invited Eric over. Also sitting with us were Jesse Day, a graduate student in Learning, Design and Technology at Stanford and Kristin Henry, artist and computer scientist. The 5 of us were soon to become a team — Team JEKKS…get it?

The folks from GAFFTA (Josette Melchor), swissnex and BCNM took turns presenting slides about possibilities for data canvas projects for 30 minutes. This was followed by another 30 of questions from a curious crowd of 60 people, which mean a lot to ingest.

The night before, we were given a dataset in a .csv format. I’d recommend never, ever looking at datasets just  before going to sleep. I dreamt of strings, ints and timestamps.

The data included four Market Street locations, which tracked people, cars, trucks and buses for every minute of time. There was a lot of material there. How did they track this? Answer: Air quality sensors. That’s right, small dips in various emissions and others could give us minute-by-minute extrapolations on what kind of traffic was happening at each place. This is an amazing model — though I still wonder about its accuracy.

data_hackathonThis was a competition and as such, we would be judged on three criteria:
Audience Engagement: Would a general audience be attracted to installation? Would they stop and watch/interact?

Legibility of Data: Can people understand the data and make sense of the specifics?

Actionability: Are people spurred to action, presumably to change their mode of transport to reduce emissions?

At 10:30, we started. I don’t have any pictures of us working. They’re pretty much exactly what you’d imagine — a bunch of dorks huddled around a table with laptops.

After introducing ourselves and talking about our individual strengths, it was apparent we had a strong group of thinkers. We tossed around various ideas for about 30 minutes and then decided to do individual experiments for about an hour.

We decided to focus our data investigation on time rather than location. The 4 locations would somehow be on the same timeline for visitors to see. Kristin dove into Python and began transcoding the data sets into a more usable format. She translated them into graphics.lines

I played around with a hand-drawn aesthetic, tracing over a map of the downtown area by hand and drawing individual points, angling for something a little more low-tech. I also knew that Eric would devise something precise, neat and clean, so left him with the hard-viz duties.


Karen worked on her own to come up with some circular representations in Processing. As with everyone, in a hackathon, people work with the strong toolsets they already have.


Jesse was the only one of us who didn’t start coding right away. Smart man. He was also the one with the conceptual breakthrough, and began coloring bars on the vehicles themselves to represent emissions.

street_view_before street_view_with_graph

We huddled and decided to focus on representing the emissions as a series of colors. We settled on representing particulates, VOC (body odor), CO, CO2 and EMF (phones, electricity), not sure at the time if they were actually being tracked by the sensors.

More coding. Eric and I tapped into our collective exhibition design/art design experience and talked a compelling interaction model. The two things that people universally enjoy are to see themselves and to control timelines. Everyone liked the idea of “seeing yourself” as particulate emissions.

We all hashed out an idea of a 2-monitor installation and consulted with Casey about whether this was permissible (answer = yes). The first would be a real-time data visualization of the various stations. The other monitor would be a mirror which — get this — would do live video-tracking and map graphic of buses, cars, trucks and people onto corresponding moving bits in the background. Additionally, you could see yourself in the background.

Since it was a hackathon-style proposal, it doesn’t have to actually work. Beauty, eh?

2:30pm. 4 hours to make it happen. The rules were: laptops closed at 6:30 and then we all present as a group.

Jesse did the design work. We argued about colors: “too 70s”, “too saturated”, etc. Eric worked on the arduous task of getting the data into a legible data visualization. I worked on the animation, which involved no data translation.

I reused animation code that I’ve used in the Player Two rotoscoping project and for the Tweets in Space video installation. The next few hours were fast-n-furious and not especially “fun”. Eric was down to the wire with the data translation into graphics. At 5:30, I was busy making animated bus, car and truck exhaust farts, which made us all laugh. At 6:30 we were done.

We had two visualizations to show the crowd. Eric’s came out perfectly and was precise and legible. I was thankful that I roped him into our team. (note: video sped up by 4x).

The animation I wrote supplemented the visualization well. It was scrappy and funny we know would make people in the audience laugh.

Neither Karen and Kristin were able to make it for our presentation, so only the boys were represented in the pictures.

We were due up towards the end and so had a chance to watch the others before us. Almost everyone else had slide shows (oops!). There were so many both crazy and conventional ideas floating around. I can’t remember all of them — it’s like reading a book of short stores where you only can recall a handful.

I did notice a few things: a lot of the younger folks had a  design-approach to making the visualizations, starting with well-illustrated concept slides. A few didn’t have any code and just the slides (to their credit, I think the Processing environment wasn’t familiar to everyone). One group made a website with a top level domain (!), one worked in the Unity game engine, there were many web-based implementations, one piece which was a sound-art piece (low points for legibility, but high for artistic merit) and one had a zombie game. Some presentations were a muddled and others were clear.

We gave a solid presentation, led by Jesse, which we called “Particulate Matters” (ba-dum-bum). We started with the “hard” data visualization and ended with the animation, which got a lot of laughs. I felt solid about our work.


The judging took a while. Fortunately, they provided beer!
beerThe results were in and we got 2nd place (woo-hoo!) out of about 14 teams. 1st place deserved it — a clean concept, which included accumulated particle emissions with Processing code showing emission-shapes dropping from the sky and accumulating on piles on the ground. The shapes matched the data. Nice work.

We got lots of chocolate as our prize. Yummy!

chocoIt turns out that Karen is the geekiest of all of us and in the days after the hackathon, improved her Processing sketch to come up with this cool-looking visualization.

Babula Rasa with Second Front

Second Front performed Babula Rasa as part of “The Artist is Elsewhere” — a one-night performance event hosted by ZERO1 and curated by Sean Fletcher and Isabel Reichert. These are some stills from the event.

My idea was to use Google Docs, specifically its spreadsheet as a virtual Tabula Rasa — a blank slate for performance. I had imagined word-play, formulas, formatting changes and text-upon-text revisions and edits. I’ve often found Mail Art to be a source of inspiration, where artists re-purposed communication networks for art discourse. I was hoping for a similar effect with Google Docs, a space normally reserved for business documents or household expense sheets.

However, my Second Front compatriots always surprise me and they quickly begain inserting images into Google Docs. Who knew? Apparently everyone else but me.

Projected live for 2 hours during “The Artist is Elsewhere” event, this quickly became a group collage. In the first 30 minutes what appeared was the “I Say” Shark, various blue women appeared, Patrick Lichty’s birthday cake, and lots and lots of cats.

Images from various Second Front performances popped up: Last Supper and Wrath of Kong. And lots of memes from popular culture, reminding me of How Conceptual Art Influenced the World Wide Web.

We could overhear the other performances live on a UStream channel. At one point, one of the performances seemed to be carrying on for a long time and someone (maybe me) uploaded Chuck Barris from the Gong Show.

At the 1-hour mark, the Shark is still there but now with the Shaggy D.A., the Tweets in Space logo, Dr. McCoy, an evil bunny and more.

Does this embrace, reject or dry-hump the New Aesthetic? That’s for you to decide.

And like all Second Front performances, we had to bomb the virtual venue when we were done…only this time with cats.

Participating Second Front members: Yael Gilks, Bibbe Hansen, Doug Jarvis, Scott Kildall, Patrick Lichty, Liz Solo with stealth guest appearance by Victoria Scott.

Imagine 2049 Time Capsule

As part of the “2049” project for the Regeneration show at the New York Hall of Science, I will be burying a time capsule called “Imagine 2049” on the grounds of the NYSCI.

I will be asking visitors both locally and remotely to submit inventions that might help people in the year 2049 such as medical devices, personal technologies and ways to sustain the planet. The letters and notes will be buried and opened 36 years from now in the year 2049.

It turns out that the old World’s Fair site will be harboring other time capsules as well. In the two World’s Fairs in Queens in 1939 and 1964, The Westinghouse Company buried two time capsules, called the Westinghouse Time Capsules.

Fortunately for me, both are scheduled to be opened 5000 years in the future, well after the Imagine 2049 Time Capsule.

Augmented Reality Workshop with John Craig Freeman


Learn how to use Augmented Reality with media artist and activist John Craig Freeman!

Upgrade! San Francisco is proud to present a weekend workshop called “Making Art with Augmented Reality”, hosted by SOMArts in San Francisco.

Register here:

Your artwork will be included in the “I Am Crime” show, along with a 17 x 22 print!

When: Weekend of March 31st-April 1st, 2012
Where: SOMArts, 834 Brannan St., San Francisco
Also: There will be an artist talk by Freeman on March 29th, 7pm as part of the ongoing Upgrade! SF conversations and events.

About the Instructor: John Craig Freeman is a public artist with over twenty years of experience using emergent technologies to produce large-scale public works at sites where the forces of globalization are impacting the lives of individuals in local communities. He has produced work and exhibited around the world including in Xi’an, Belfast, Los Angeles, Beijing, Zurich, New York City, Taipei, São Paulo, Warsaw, Kaliningrad, Miami, Bilbao, Havana, Atlanta, Calgary, Buffalo, Boston, Mexico City, London and San Francisco. Freeman received a Master of Fine Arts degree from the University of Colorado, Boulder in 1990. He is currently an Associate Professor of New Media, at Emerson College (Boston) in the Department of Visual and Media Arts and a Visiting Scholar at the Center for Research in Computing and the Arts, at UC San Diego.

Support for this workshop is provided by Southern Exposure’s Alternative Exposure Grant Program.

Pictured above: Border Memorial Frontera de los Muertos by John Craig Freeman


Sperm Bank – a popup show

This weekend in San Francisco, I will be presenting a popup show in conjunction with Wire + Nail Gallery called Sperm Bank.

Working with playful interpretations of the masculine seed, I will be selling various goods for the holidays. You can purchase plexiglass multiples for your wall, soap and vinyl cutouts with special versions for your laptop or bicycle.

Times: Saturday night, 6:30-9:30 and Sunday afternoon 12pm-4pm.
Where: Wire + Nail Gallery, 3150 18th Street, 104, San Francisco

I will also be displaying a spreadsheet reflecting the cost-of-goods and how much the pop-op shops makes as an experiment in open accounting.

Finally, we will have this animation on display (as a formally-editioned artist work):

Upgrade! San Francisco at the Exploratorium

Last Thursday, Upgrade! San Francisco met at the Exploratorium — an art & science institution founded in 1969. Hosted by the New Media Studio, whose mandate is a hands-on educational experience, we got a tour from staff & Upgraders: Eric Socolofsky, Lotte Meijer and Chris Cerrito. In the after hours, we learned about three of NM Studio’s projects and the behind-the-scenes techniques to make a rich viewer-based experience.

The first installation we saw was Elastrotron — an interactive installation, which acts as neo-funhouse mirror, warping our reality. In front of the screen, visitors quickly loose their inhibitions, performing with their bodies and creating interactions with strangers.

We then played with Where do you belong? in which you can take a picture of yourself, inserting your image in between two other people you select. The buttons to take your picture are at the edges of the frame, creating an effect so that you appear to be holding hands with your two neighbors. The challenges here were less conceptual — as the idea was straightforward — but instead of user-interface. The solution was to make two large buttons that you have to hit with both hands at the same time and also a countdown timer so that that you don’t repeatedly hit the ‘take picture’ button (a common result, especially with younger kids).

This bubble floor, called Social Projections impressed me by its non-interactive nature. At first, it looks like it responds to movement, reminding me of Scott Snibbe’s Boundary Functions — but instead, there is no camera vision. People quickly make up their own rules. Different shapes appear and move through the space. People negotiate social behavior, jumping over lines, stepping in and out and performing collaborative tasks, all without interaction.

We followed up the tour with conversation along the lines of development process, how to generate user feedback and more. Here, it turns out that the new media staff spends a lot of time casually observing how people use the interfaces, refining the process. Prototypes are put on the floor without a huge degree of bureaucracy, creating a truly experimental science space.