EquityBot: Capturing Emotions

In my ongoing research and development of EquityBot — a stock-trading bot* with a philanthropic personality, which is my residency project at Impakt Works — I’ve been researching various emotional models for humans.

The code I’m developing will try to make correlations between stock prices and group emotions on Twitter. It’s a daunting task and one where I’m not sure of the signal-to-noise ratio will be (see disclaimer). As an art experiment, I don’t know what will emerge from this, but it’s geeky and exciting.

In the last couple weeks, I’ve been creating a rudimentary system that will just capture words. A more complex system would use sentiment analysis algorithms. My time and budget is limited, so phase 1 will be a simple implementation.

I’ve been looking for some sort of emotional classification system. There are several competing models (of course).

My favorite is the Plutchik Wheel of Emotions, which was developed in 1980. It has a symmetrical look to it and apparently is deployed in various AI systems.



Other models such as the Lövheim cube of emotion are more recent and seem compelling at first. But it’s missing something critical: sadness or grief. Really? This is such a basic human emotion and when I saw it was absent, I tossed the cube model.


Back to the Plutchik model…my “Twitter bucket” captures certain words, from the color wheel above. I want enough words for a reasonable statistical correlation (about 2000 tweets/hour). Too many of one word will strain my little Linode server. For example, the word “happy” is a no-go since there thousands of Tweets with that word in it each minute.

Many people tweet about anger by just using the word “angry” or “anger”, so that’s an easy one. Same thing goes with boredom/boring/bored.

For other words, I need to go synonym-hunting, like: apprehension. The twitter stream with this word is just a trickle. I’ve mapped it to “worry” or “anxiety”, which shows up more often in tweets. It’s not quite correct, but reasonably close.

The word “terror” has completely lost it’s meaning, and now only refers to political discourse. I’m still trying to figure out a good synonym-map for terror: terrifying, terrify, terrible? It’s not quite right. There’s not a good word to represent that feeling of absolute fear.

This gets tricky and I’m walking into the dark valley of linguistics. I am well-aware of the pitfalls.

Screen Shot 2014-10-01 at 3.18.33 PM


* Disclaimer:
EquityBot doesn’t actually trade stocks. It is an art project intended for illustrative purposes only, and is not intended as actual investment advice. EquityBot is not a licensed financial advisor. EquityBoy It is not, and should not be regarded as investment advice or as a recommendation regarding any particular security or course of action.


Polycon in Berlin

This week I traveled to Berlin for Polycon. No…it’s not a convention on polyamory, but a porject developed by my longtime friend, Michael Ang (aka Mang). Polygon Construction Kit (aka Polycon) is a software toolkit for converting 3D polygon models into physical objects.

IMG_0246I wanted an excuse to visit Berlin, to hang out with Mang and to open up some possibilities for physical data-visualization behind EquityBot, which I’m working at for the artist-in-residency at Impakt Works and their upcoming festival.

I brought my recently-purchased Printrbot Simple Metal, which I had disassembled into this travel box.IMG_0281

After less than 30 minutes, I had it reassembled and working. Victory! Here it is, printing one of the polygon connectors.

IMG_0248How does Polycon work? Mang shared with me the details. You start with a simply 3D model from some sort of program. He uses SketchUp for creating physical models of his large-scale sculptures. I prefer OpenFrameworks, which is powerful and will let me easily manipulate shapes from data streams.

Here’s the simple screenshot in OpenFrameworks of two polyhedrons. I just wrote this the other day, so there’s no UI for it yet.

Screen Shot 2014-09-25 at 6.10.14 PM

And here is how it looks in MeshLab. It’s water-tight, meaning that it can be 3D-printed.Screen Shot 2014-09-25 at 6.10.59 PM

My goal is to do larger-scale data visualizations than some of my previous works such as Data Crystals and Water Works. I imagine room-sized installations. I’ve had this idea for many months of using the 3D printer to create joinery from datasets and to skin the faces using various techniques, TBD.

How it works: Polycon loads a 3D model and using Python scripts in FreeCAD will generate 3D joints that along with wooden dowels can be assembled into polygonal structures. Screen Shot 2014-09-25 at 6.09.00 PM

The Printrbot makes adequate joinery, but it’s nowhere near as pretty as the Vero prints on the Object 500 at Autodesk. It doesn’t matter that much because my digital joinery will be hidden in the final structures.IMG_0272Mang guided be through the construction of my first Polycon structure. There’s a lot of cleanup work involved such as drilling out the holes in each of the joints. IMG_0274It took awhile to assemble the basic form. There are vertex-numbering improvements that we’ll both make to the software. Together, Mang and I brainstormed ideas as to how to make the assembly go more quickly.IMG_0259After about 15 minutes, I got my first polygon assembled.

IMG_0265 It looks a lot like…the 3D model. I plan to be working on these forms in the next several months and so felt great after a successful first day.IMG_0268And here is a really nice image of one of Mang’s pieces — these are sculptures of mountains that he created. The backstory is that he made these from memories while flying high in a glider and they represent mountains. I like where he’s going with his artwork: making models based on nature, with ideas of recording these spaces and playing them back in various urban spaces. You can check out Michael Ang’s work here on his website.






A Starting Point: Distributed Capital

I’m doing more research on EquityBot —the project for my Impakt Works residency, which I just started a couple of days ago.

EquityBot is a stock-trading algorithm that explores the connections between collective emotions on social media and financial speculation. It will be presented at the Impakt Festival at the end of October.

It will also consist of a sculptural component (presented post-festival), which is the more experimental form.

Many of you are familiar with Paul Baran’s work on designing a distributed network, but many others may not be. He worked for the U.S. Air Force and determined that a central communications network would be vulnerable to attack, and suggested that the United States use a distributed network.
baranInterestingly, there is a widespread myth that the Internet, derived from APANET, was designed to withstand a nuclear attack using this model. This isn’t the case, just that the architects of the internet transmission protocol heard of Rand’s work and adapted it for packet use. Yet, the myth persists.

On a side note, perhaps military technology could be useful for the public good. If only we could declassify the technology, like Baran did.

The distributed network reminds me of a 3D polygon mesh I think this could be a good source of 3D data-visualization: Distributed Capital. I’ll research this more in the future.

But EquityBot isn’t about networks in the formal sense, it is a project about constructing a predictive model of stock changes based on the idea that Twitter sentiments correlate with fluctuations in stock prices. Screen Shot 2014-09-17 at 6.08.23 AM

Do I know there is a correlation? Not yet, but I think there is a good possibility. One of my reading sources, The Computational Beauty of Nature, sums up the value of simulated models in its introduction. The predictive model might fail in its results but it will likely reveal a greater truth in the economic system that it is trying to predict. Thus, knowing the uncertainty ahead of time will provide a sense of certainty. EquityBot may not “work” but then again, it may.

compbeautyofnatureMy source of dissent is the excellent book, The Signal and The Noise: Why So Many Predictions Fail — but Some Don’t by Nate Silver. After reading this, last summer, I was convinced that any predictive analysis would be simply be noise. I was disheartened and halted the EquityBot project (previously called Grantbot) for many months.


However, now I’m not so sure. It seems likely that people’s moods would affect financial decisions, which in turn would affect stock prices. With studies such as this one by Vagelis Hristidis, which found some correlation to Twitter chatter and stock, I think there is something to this, which is why I’ve revisited the EquityBot project.

I’ll follow the Buddhist maxim with this project and embrace its uncertainty.


Life of Poo

I’ve been blogging about my Water Works project all summer and after the Creative Code Gray Area presentation on September 10th, the project is done. Phew. Except for some of the residual documentation.

In the hours just before I finished my presentation, I also managed to get Life of Poo working. What is it? Well, an interactive map of where your poo goes based on the sewer data that I used for this project.

Huh? Try it.

Screen Shot 2014-09-16 at 6.42.06 AM

This is the final piece of my web-mapping portion of Water Works and uses Leaflet with animated markers, all in Javascript, which is a new coding tool in my arsenal (I know, late to the party). I learned the basics in the Gray Area Creative Code Immersive class, which was provided as part of the fellowship.

The folks at Stamen Design also helped out and their designer-technicians turned me onto Leaflet as I bumbled my way through Javascript.

How does it work?

On the Life of Poo section of the Water Works website, you enter an address (in San Francisco) such as “Twin Peaks, SF” or “47th & Judah, SF” and the Life of Poo and then press Flush Toilet.

This will begin an animated poo journey down the sewer map and to the wastewater treatment plant.

Screen Shot 2014-09-16 at 6.50.17 AMNot all of the flushes works as you’d expect. There’s still glitches and bugs in the code. If you type in “16th & Mission”, the poo just sits there. Hmmm.

Why do I have the bugs? I have some ideas (see below) but I really like the chaotic results so will keep it for now.

Screen Shot 2014-09-16 at 6.54.32 AM


I think the erratic behavior is happening because of a utility I wrote, which does some complex node-trimming and doesn’t take into account gravity in its flow diagrams. The sewer data has about 30,000 valid data points and Leaflet can only handle about 1500 or so without it taking forever to load and refresh.

The utility I wrote parses the node data tree and recursively prunes it to a more reasonable number, combining upstream and downstream nodes. In an overflow situation, technically speaking, there are nodes where waste might be directed away from the waste-water treatment plant.

However, my code isn’t smart enough to determine which are overflow pipes and which are pipes to the treatment plants, so the node-flow doesn’t work properly.

In case you’re still reading, here’s an illustration of a typical combined system, that shows how the pipes might look. The sewer outfall doesn’t happen very often, but when your model ignores gravity, it sure will.


The 3D print of the sewer, the one that uses the exact same data set as Life of Poo looks like this.

sewerworks_front sewerworks_top

EquityBot @ Impakt

My exciting news is that this fall I will be an artist-in-residence at Impakt Works, which is in Utrecht, the Netherlands. The same organization puts on the Impakt Festival every year, which is a media arts festival that has been happening since 1988. My residency is from Sept 15-Nov 15 and coincides with the festival at the end of October.

Utrecht is a 30 minute train ride from Amsterdam and 45 minutes from Rotterdam and by all accounts is a small, beautiful canal city with medieval origins and also hosts the largest university in the Netherlands.

Of course, I’m thrilled. This is my first European art residency and I’ll have a chance to reconnect with some friends who live in the region as well as make many new connections.

impakt; utrecht; www.impakt.nlThe project I’ll be working on is called EquityBot and will premiere at the Impakt Festival in late October as part of their online component. It will have a virtual presence like my Playing Duchamp artwork (a Turbulence commission) and my more recent project, Bot Collective, produced while an artist-in-residence at Autodesk.

Like many of my projects this year, this will involve heavy coding, data-visualization and a sculptural component.


At this point, I’m in the research and pre-production phase. While configuring back-end server code, I’m also gathering reading materials about capital and algorithms for the upcoming plane rides, train rides and rainy Netherland evenings.

Here is the project description:


EquityBot is a stock-trading algorithm that explores the connections between collective emotions on social media and financial speculation. Using custom algorithms Equitybot correlates group sentiments expressed on Twitter with fluctuations in related stocks, distilling trends in worldwide moods into financial predictions which it then issues through its own Twitter feed. By re-inserting its results into the same social media system it draws upon, Equitybot elaborates on the ways in which digital networks can enchain complex systems of affect and decision making to produce unpredictable and volatile feedback loops between human and non-human actors.

Currently, autonomous trading algorithms comprise the large majority of stock trades.These analytic engines are normally sequestered by private investment companies operating with billions of dollars. EquityBot reworks this system, imagining what it might be like it this technological attention was directed towards the public good instead. How would the transparent, public sharing of powerful financial tools affect the way the stock market works for the average investor?

kildall_bigdatadreamsI’m imagining a digital fabrication portion of EquityBot, which will be the more experimental part of the project and will involve 3D-printed joinery. I’ll be collaborating with my longtime friend and colleague, Michael Ang on the technology — he’s already been developing a related polygon construction kit — as well as doing some idea-generation together.

“Mang” lives in Berlin, which is a relatively short train ride, so I’m planning to make a trip where we can work together in person and get inspired by some of the German architecture.

My new 3D printer — a Printrbot Simple Metal — will accompany me to Europe. This small, relatively portable machine produces decent quality results, at least for 3D joints, which will be hidden anyways.


WaterWorks: From Code to 3D Print

In my ongoing Water Works project —  a Creative Code Fellowship with Stamen DesignGray Area and Autodesk — I’ve been working for many many hours on code and data structures.

The immediate results were a Map of the San Francisco Cisterns and a Map of the “Imaginary Drinking Hydrants”.

However, I am also making 3D prints — fabricated sculptures, which I map out in 3D-space using and then 3D print.

The process has been arduous. I’ve learned a lot. I’m not sure I’d do it this way again, since I had to end up writing a lot of custom code to do things like triangle-winding for STL output and much, much more.

Here is how it works. First, I create a model in Fusion 360 — an Autodesk application — which I’ve slowly been learning and have become fond of.

Screen Shot 2014-08-21 at 10.12.47 PM

From various open datasets, I map out the geolocations locations of the hydrants or the cisterns in X,Y space. You can check out this Instructable on the Mapping Cisterns and this blog post on the mapping of the hydrants for more info. Using OpenFrameworks — an open source toolset in C++, I map these out in 3D space. The Z-axis is the elevation.

The hydrants or cisterns are both disconnected entities in 3D space. They’d fall apart when trying to make a 3D print, so I use Delaunay triangulation code to connect the nodes as a 3D shape.

Screen Shot 2014-08-21 at 10.07.59 PMI designed my custom software to export a ready-to-print set of files in an STL format. My C++ code includes an editor which lets you do two things:

(1) specify which hydrants are “normal” hydrants and which ones have mounting holes in the bottom. The green ones have mounting holes, which are different STL files. I will insert 1/16″ stainless steel rod into the mounting holes and have the 3D prints “floating” on a piece of wood or some other material.

(2) my editor will also let you remove and strengthen each Delaunay triangulation node — the red one is the one currently connected. This is the final layout for the print, but you can imagine how cross-crossed and hectic the original one was.

Screen Shot 2014-08-21 at 10.08.44 PM

Here is an exported STL in Meshlab. You can see the mounting holes at the bottom of some of the hydrants.
Screen Shot 2014-08-21 at 10.20.13 PM

I ran many, many tests before the final 3D print.


And finally, I setup the print over the weekend. Here is the print 50 hours later.

It’s like I’m holding a birthday cake — I look so happy. This is at midnight last Sunday.scott_holding_tray

The cleaning itself is super-arduous.


And after my initial round of cleaning, this is what I have.hydrats_roughAnd here are the cistern prints.


I haven’t yet mounted these prints, but this will come soon. There’s still loads of cleaning to do.


SFPUC says Emergency Drinking Hydrants Discontinued

Last week, I posted an online map of the 67 Emergency Drinking Water Hydrants in San Francisco. It was covered in SFist, got a lot of retweets and coverage.

I felt a semblance of pride in being a “citizen-mapper” and helping the public in case of a dire emergency. I wondered why these maps weren’t more public. I had located the emergency hydrant data from a couple of different places, but nowhere very visible.

Apparently, these hydrants are not for emergency use after all. Who knew? Nowhere could I find a place that said they were discontinued.

Last Friday, the SFPUC contacted SFist and issued this statement (forwarded to me by the reporter, Jay Barmann):


The biggest concern [about getting emergency water from hydrants] is public health and safety. First of all, tapping into a hydrant is dangerous as many are high pressure and can easily cause injury. Some are very high pressure! Second, even the blue water drop hydrants from our old program in 2006 (no longer active) can be contaminated after an earthquake due to back flow, crossed lines, etc. We absolutely do not want the public trying to open these hydrants and they could become sick from drinking the water. They could also tap a non-potable hydrant and become sick if they drink water for fire-fighting use. After an earthquake, we have water quality experts who will assess the safety of hydrants and water from the hydrants before providing it to the public.

AND of course, no way should ANYONE be opening hydrants except SFFD and SFWD; if people are messing with hydrants, this could de-pressurize the system when SFFD needs the water pressure to fight fires, and also will be a further distraction for emergency workers to monitor.

We are in the process of updating our emergency water program… We are also going to be training NERT teams to help assess water after an emergency.


Uh-oh.  Jay wrote: “It had sounded like designer Scott Kildall, who had been mapping the the hydrants, had done a fair amount of research, but apparently not.”

Was I lazy or over-excited? I don’t think so. I re-scoured the web, nowhere did I find a reference to the Blue Drop Hydrant Program being discontinued.

My reference were these two PDFs (links may be changed by municipal agencies after this post).

PDF Map on the SFPUC website


Water Supplies Manual from the San Francisco Fire Department 



** I have some questions **
(1) Since nowhere on the web could I find a reference to this program being discontinued, why are these maps still online? Why didn’t the SFPUC make a public announcement that this program was being discontinued? It makes me look bad as a Water Detective, Data Miner, but more importantly there may have been other people relying on thse hydrants. Perhaps.

(2) Why are there still blue drops painted on some of these hydrants? Shouldn’t the SFPUC have repainted all of the blue drop hydrants white to signal that they are no longer in use?

(3) Why did our city spend 1 million dollars several years ago (2006) to set up these emergency hydrants in the first place when they weren’t maintainable? The SFPUC statement says: “even the blue water drop hydrants…can be contaminated after an earthquake due to back flow, crossed lines, etc.”

Did something change between 2006 and 2014? Wouldn’t these lines have always been susceptible to backflow, crossed lines, etc. when this program was initiated? 1 million bucks is a lot of money!

(4) Finally, and the most prescient question is why don’t we have emergency drinking hydrants or some other centralized system?

I *love* the idea of people going to central spots in their neighborhood case they don’t have access to drinking water. Yes, we should have emergency drinking water in our homes. But many people haven’t prepared. Or maybe your basement will collapse and your water will be unavailable. Or maybe you’ll be somewhere else: at work, at a restaurant, who knows?

Look, I’m a huge supporter of city government and want to celebrate the beautiful water infrastructure of San Francisco with my Water Works project, part of  the Creative Code Fellowship with Stamen DesignGray Area and Autodesk. The SFPUC does very good work. They are very drought-conscious and have great info on their website in general.

It’s unfortunate that these blue drop hydrants were discontinued.

It was an heartening tale of urban planning. I wish the SFPUC had contacted me directly instead of the person who wrote article. I’ll plan to update my map accordingly, perhaps stating that this is a historical map of sorts.

By the way, you can still see the blue drop hydrants on Street View:


And here’s the Facebook statement by SFPUC — hey, I’m glad they’re informing the public on this one!


Mapping Emergency Drinking Water Hydrants

Did you know that San Francisco has 67 fire hydrants that are designed for emergency drinking water in case of an earthquake-scale disaster? Neither did I. That’s because just about no one knows about these hydrants.

While scouring the web for Cistern locations — as part my Water Works Project*, which will map out the San Francisco water infrastructure and data-visualize the physical pipes and structures that keep the H2O moving in our city — I found this list.

I became curious.


I couldn’t find a map of these hydrants *anywhere* — except for an odd Foursquare map that linked to a defunct website.

I decided to map them myself, which was not terribly difficult to do.

Since Water Works is a project for the Creative Code Fellowship with Stamen DesignGray Area and Autodesk and I’m collaborating with Stamen, mapping is essential for this project. I used Leaflet and Javascript. It’s crude but it works — the map does show the locations of the hydrants (click on the image to launch the map).

The map, will get better, but at least this will show you where the nearest emergency drinking hydrant is to your home.


Apparently, these emergency hydrants were developed in 2006 as part of a 1 million dollar program. These hydrants are tied to some of the most reliable drinking water mains.

Yesterday, I paid a visit to three hydrants in my neighborhood. They’re supposed to be marked with blue drops, but only 1 out of the 3 were properly marked.

Hydrant #46: 16th and Bryant, no blue dropIMG_0022

Hydrant #53, Precita & Folsom, has a blue dropIMG_0016

Hydrant #51, 23rd & Treat, no blue drop, with decorative stickerIMG_0011

Editors note: I had previously talked about buying a fire hydrant wrench for a “just in case” scenario*. I’ve retracted this suggestion (by editing this blog entry).

I apologize for this suggestion: No, none of us should be opening hydrants, of course. And I’m not going to actually buy a hydrant wrench. Neither should you, unless you are SFFD, SFWD or otherwise authorized.

Oh yes, and I’m not the first to wonder about these hydrants. Check out this video from a few years ago.

* For the record, I never said that would ever open a fire hydrant, just that I was planning to by a fire hydrant wrench. One possible scenario is that I would hand my fire hydrant wrench to a qualified and authorized municipal employee, in case they were in need.

Modeling Cisterns

How do you construct a 3D model of something that lives underground and only exists in a handful of pictures taken from the interior? This was my task for the Cisterns of San Francisco last week.

The backstory: have you ever seen those brick circles in intersections and wondered what the heck they mean? I sure have.

It turns out that underneath each circle is an underground cistern. There are 170 or so* of them spread throughout the city. They’re part of the AWSS (Auxiliary Water Supply System) of San Francisco, a water system that exists entirely for emergency use.

The cisterns are just one aspect of my research for Water Works, which will map out the San Francisco water infrastructure and data-visualize the physical pipes and structures that keep the H2O moving in our city.

This project is part of my Creative Code Fellowship with Stamen Design, Gray Area and Autodesk.


Many others have written about the cisterns: Atlas Obscura, Untapped Cities, Found SF, and the cisterns even have their own Wikipedia page, albeit one that needs some edits.

The original cisterns, about 35 or so, were built in the 1850s, after a series of great fires ravaged the city, located in the Telegraph Hill to Rincon Hill area. In the next several decades they were largely unused, but the fire department filled them up with water for a “just in case” scenario.

Meanwhile, in the late 19th century as San Francisco rapidly developed into a large city, it began building a pressurized hydrant-based fire system, which was seen as many as a more effective way to deliver water in case of a fire. Many thought of the cisterns as antiquated and unnecessary.

However, when the 1906 earthquake hit, the SFFD was soon overwhelmed by a fire that tore through the city. The water mains collapsed. The old cisterns were one of the few sources of reliable water.

After the earthquake, the city passed bonds to begin construction of the AWSS — the separate water system just for fire emergencies. In addition to special pipes and hydrants fed from reservoirs for hydrants, the city constructed about 140 more underground cisterns.

Cisterns are disconnected nodes from the network, with no pipes and are maintained by the fire department, which presumably fill them every year. I’ve heard that some are incredibly leaky and others are watertight.

What do they look like inside? This is the *only* picture I can find anywhere and is of a cistern in the midst of seismic upgrade work. This one was built in 1910 and holds 75,000 gallons of water, the standard size for the cisterns. They are HUGE. As you can surmise from this picture, the water is not for drinking.cistern(Photographer: Robin Scheswohl; Title: Auxiliary Water supply system upgrade, San Francisco, USA)

Since we can’t see the outside of an underground cistern, I can only imagine what it might look like. My first sketch looked something like this.

cistern_drawingI approached Taylor Stein, Fusion 360 product evangelist at Autodesk, who helped me make my crude drawing come to life. I printed it out on one of the Autodesk 3D printers and lo and behold it looks like this: a double hamburger with a nipple on top. Arggh! Back to the virtual drawing board.IMG_0010I scoured the interwebs and found this reference photograph of an underground German cistern. It’s clearly smaller than the ones in San Francisco, but it looks like it would hold water. The form is unique and didn’t seem to connote something other than a vessel-that-holds-water.800px-Unterirdische_ZisterneOnce again, Taylor helped me bang this one out — within 45 minutes, we had a workable model in Fusion 360. We made ours with slightly wider dimensions on the top cone. The lid looks like a manhole.


Within a couple hours, I had some 3D prints ready. I printed out several sizes, scaling the height to for various aesthetic tests.


This was my favorite one. It vaguely looks like cooking pot or a tortilla canister, but not *very* much. Those three rectangular ridges, parked at 120-degree angles, give it an unusual form


Now, it’s time to begin the more arduous project of mapping the cisterns themselves. And the tough part is still finishing the software that maps the cisterns into 3D space and exports them as an STL with some sort of binding support structure.

* I’ve only been able to locate 169 cisterns. Some reports state that there are 170 and others that there are 173 and 177.

Data Miner, Water Detective

This summer, I’m working on a Creative Code Fellowship with Stamen Design, Gray Area and Autodesk. The project is called Water Works, which will map and data-visualize the San Francisco water infrastructure using 3D-printing and the web.

Finding water data is harder than I thought. Like detective Gittes in the movie Chinatown, I’m poking my nose around and asking everyone about water. Instead of murder and slimy deals, I am scouring the internet and working with city government. I’ve spent many hours sleuthing and learning about the water system in our city.


In San Francisco, where this story takes place, we have three primary water systems. Here’s an overview:

The Sewer System is owned and operated by the SFPUC. The DPW provides certain engineering services. This is a combined stormwater and wastewater system. Yup, that’s right, the water you flush down the toilet goes into the same pipes as the the rainwater. Everything gets piped to a state-of-the art wastewaster treatment plant. Amazingly the sewer pipes are fed almost entirely by gravity, taking advantage of the natural landscape of the city.

The Auxiliary Water Supply System (AWSS) was built in 1908 just after the 1906 San Francisco Earthquake. It is an entire water system that is dedicated solely to firefighting. 80% of the city was destroyed not by earthquake itself, but by the fires that ravaged the city. The fires rampaged through the city mostly because the water mains collapsed. Just afterwards, the city began construction on a separate this infrastructure for combatting future fires. It consists of reservoirs that feed an entire network of pipes to high-pressure fire hydrants and also includes approximately 170 underground cisterns at various intersections in the city. This incredible separate water system is unique to San Francisco.

The Potable Water System, a.k.a. drinking water is the water we get from our faucets and showers. It comes from the Hetch Hetchy — a historic valley but also a reservoir and water system constructed from 1913-1938 to provide water to San Francisco. This history is well-documented, but what I know little about is how the actual drinking water gets piped into San Francisco. homes Also, the San Francisco water is amongst the most safe in the world, so you can drink directly from your tap.

Given all of this, where is the story? This is the question that I asked folks at Stamen, Autodesk and Gray Area during a hyper-productive brainstorming session last week. Here’s the whiteboard with the notes. The takeaways, as folks call it are, are below and here I’m going to get nitty-gritty into process.

(whiteboard brainstorming session with Stamen)


(1) In my original proposal, I had envisioned a table-top version of the entire water infrastucture: pipes, cisterns, manhole chambers, reservoirs as a large-scale sculpture, printed in panels. It was kindly pointed out to me by the Autodesk Creative Projects team that this is unfeasible. I quickly realized the truth of this: 3D prints are expensive, time-consuming to clean and fragile. Divide the sculptural part of the project into several small parts.

(2) People are interested in the sewer system. Someone said, “I want to know if you take a dump at Nob Hill, where does the poop go?” It’s universal. Everyone poops, even the Queen of England and even Batman. It’s funny, it’s gross, it’s entirely human. This could be accessible to everyone.

(3) Making visible the invisible or revealing what’s in plain sight. The cisterns in San Francisco are one example. Those brick circles that you see in various intersections are actually 75,000 gallon underground cisterns. Work on a couple of discrete urban mapping projects.

(4) Think about focusing on making a beautiful and informative 3D map / data-visualization of just 1 square mile of San Francisco infrastructure. Hone on one area of the city.

(5) Complex systems can be modeled virtually. Over the last couple weeks, I’ve been running code tests, talking to many people in city government and building out an entire water modeling systems in C++ using OpenFrameworks. It’s been slow, deliberate and arduous. Balance the physical models with a complex virtual one.

I’m still not sure exactly where this project is heading, which is to be expected at this stage. For now, I’m mining data and acting as a detective. In the meantime, here is the trailer for Chinatown, which gives away the entire plot in 3 minutes.